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1 The Frobenius Characteristic Map and the Casimir Ele-
ment

At this point, we have 4 bases for the symmetric functions:

1. the monomial symmetric functions mλ

2. the elementary symmetric functions eλ

3. the homogeneous symmetric functions hλ

4. the power-sum symmetric functions pλ (if the coefficients contain Q).

We showed that this 4th basis has some connection to the symmetric group.

1.1 The Frobenius characteristic map

Definition 1.1. The Frobenius characteristic map F : {characters of Sn} → Λ(n) is the
map

χ 7→ 1

n!

∑
σ∈Sn

χ(σ)pγ(σ),

where γ(σ) is the cycle partition of the permutation σ. Equivalently, we can say

χ 7→
∑
|λ|=n

χ(σλ)pλ
|Cλ|
n!

=
∑
|λ|=n

χ(σλ)
pλ
zλ
,

where |Cλ| = n!/zλ.

Example 1.1. Let 1Sn be the character of the trivial representation of Sn. Then

F (1Sn) = hn.

s
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Recall the bijection ω : Λ→ Λ that sends hn → en and en → hn. Applying ω to H(t),
the generating function for the hn, we get

ωH(t) = E(t) =
1

H(−t)
.

What ω does to the pk is determined by its action on the generating function H(t). Recall
that

H(t) = exp

(∑
k

pkt
k

k

)
.

We have

ωH(t) =
1

H(−t)
= exp

(
−
∑
k

pk(−t)k

k

)
= exp

(∑
k

(−1)k−1pkt
k

k

)
,

which gives us that ω(pk) = (−1)k−1pk. Consequently, ω(pλ) = ε(σλ)pλ. This means that

en =
∑
|λ|=n

ε(σλ)
pλ
zλ
,

which shows that
F (ε) = en.

In fact, for any character χ of Sn,

F (χ⊗ ε) = ωF (χ).

1.1.1 Inner products of symmetric functions

Example 1.2. Let δλ be the character that is 1 on the conjugacy class of elements with
cycle structure λ and 0 otherwise. Then

F (δλ) =
pλ
zλ
.

How does F relate to inner products? The δλ form a basis for characters of Sn, and
their inner product is

(δλ, δµ) =
1

n!

∑
σ∈Sn

δλ(σ)δµ(σ−1) =
|Cλ|
n!

δλ,µ =
1

zλ
δλ,µ,

where δλ,µ is a Kronecker delta. We then define an inner product on symmetric functions
as follows.
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Definition 1.2. The inner product of symmetric functions is defined on the power-sum
basis as

〈pλ, pµ〉 := zλδλµ.

This definition makes F an isometry because

〈F (δλ〉 , F (δµ)) = 〈pλ/zλ, pµ/zµ〉 =
1

zλ
δλµ.

Also, for any character χ,

χ(σλ) = zλ(χ, δλ) = zλ 〈F (χ), F (δλ)〉

This says that the {pλ} and {pλ/zλ} are dual bases.

1.2 The Casimir element of a vector space

Definition 1.3. Let V be a finite dimensional inner product space. Two bases {ui} , {vj}
are dual bases if 〈ui, vj〉 = δi,j .

Definition 1.4. Let V be a finite dimensional inner product space with dual bases {ui} , {vj}.
The Casimir element θ ∈ V ⊗ V is θ =

∑
i ui ⊗ vi.

Remarkably, this depends only on 〈·, ·〉. Since V is finite dimensional, we have the
isomorphism V ∼= V ∗ given by ui 7→ ξi, where ξj(ui) = δi,j . Then we have

V ⊗ V ∼= V ⊗ V ∗ ∼= End(V),

where the second isomorphism is given by v ⊗ ξ 7→ (w 7→ ξ(w)v).
What corresponds to the identity element 1V ∈ End(V )? It is

∑
i ui ⊗ ξi, where

ξi(uj) = δi,j . Then the Casimir element is the corresponding element in V ⊗ V .

1.2.1 The Casimir element of the symmetric functions

For convenience of notation, call

Ω = H(1) =

∞∑
n=0

hn =
∏
i

1

1− xi
.

We also call this Ω[X] to emphasize that this is a symmetric function in variables x1, x2, . . . .

Ω = exp

(∑
k>0

pk
k

)
.
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ΛQ⊗ΛQ is isomorphic to the symmetric functions in x1, x2, . . . and y1, y2, . . . , where the
functions are symmetric separately with respect to the xi and the yj . So we may identify
the Casimir element as

θn =
∑
|λ|=n

pλ(X)pλ(Y )

zλ
.

What is this? Note that

pk(X)pk(Y ) =

(∑
i

xki

)∑
j

ykj

 =
∑
i,j

(xiyj)
k = pk(XY ),

which makes

pλ(X)pλ(Y ) = pλ1(X)pλ1(Y ) · · · pλ`(X)pλ`(Y ) = pλ1(X) · · · pλ`(XY ) = pλ(XY ).

We then get the following expression for the Casimir element:

θ =
∑
n

∑
|λ|=n

pλ(XY )

zλ
= Ω[XY ] =

∏
i,j

1

1− xiyj
.
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