Math 249 Lecture 11 Notes

Daniel Raban

September 18, 2017

1 The Frobenius Characteristic Map and the Casimir Element

At this point, we have 4 bases for the symmetric functions:

- 1. the monomial symmetric functions m_{λ}
- 2. the elementary symmetric functions e_{λ}
- 3. the homogeneous symmetric functions h_{λ}
- 4. the power-sum symmetric functions p_{λ} (if the coefficients contain \mathbb{Q}).

We showed that this 4th basis has some connection to the symmetric group.

1.1 The Frobenius characteristic map

Definition 1.1. The Frobenius characteristic map $F : \{\text{characters of } S_n\} \to \Lambda_{(n)}$ is the map

$$\chi \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} \chi(\sigma) p_{\gamma(\sigma)},$$

where $\gamma(\sigma)$ is the cycle partition of the permutation σ . Equivalently, we can say

$$\chi \mapsto \sum_{|\lambda|=n} \chi(\sigma_{\lambda}) p_{\lambda} \frac{|C_{\lambda}|}{n!} = \sum_{|\lambda|=n} \chi(\sigma_{\lambda}) \frac{p_{\lambda}}{z_{\lambda}},$$

where $|C_{\lambda}| = n!/z_{\lambda}$.

Example 1.1. Let $\mathbb{1}_{S_n}$ be the character of the trivial representation of S_n . Then

$$F(1_{S_n}) = h_n$$
.

Recall the bijection $\omega : \Lambda \to \Lambda$ that sends $h_n \to e_n$ and $e_n \to h_n$. Applying ω to H(t), the generating function for the h_n , we get

$$\omega H(t) = E(t) = \frac{1}{H(-t)}.$$

What ω does to the p_k is determined by its action on the generating function H(t). Recall that

$$H(t) = \exp\left(\sum_{k} \frac{p_k t^k}{k}\right).$$

We have

$$\omega H(t) = \frac{1}{H(-t)} = \exp\left(-\sum_{k} \frac{p_k(-t)^k}{k}\right) = \exp\left(\sum_{k} \frac{(-1)^{k-1} p_k t^k}{k}\right),$$

which gives us that $\omega(p_k) = (-1)^{k-1} p_k$. Consequently, $\omega(p_\lambda) = \varepsilon(\sigma_\lambda) p_\lambda$. This means that

$$e_n = \sum_{|\lambda|=n} \varepsilon(\sigma_\lambda) \frac{p_\lambda}{z_\lambda},$$

which shows that

$$F(\varepsilon) = e_n.$$

In fact, for any character χ of S_n ,

$$F(\chi \otimes \varepsilon) = \omega F(\chi).$$

1.1.1 Inner products of symmetric functions

Example 1.2. Let δ_{λ} be the character that is 1 on the conjugacy class of elements with cycle structure λ and 0 otherwise. Then

$$F(\delta_{\lambda}) = \frac{p_{\lambda}}{z_{\lambda}}.$$

How does F relate to inner products? The δ_{λ} form a basis for characters of S_n , and their inner product is

$$(\delta_{\lambda}, \delta_{\mu}) = \frac{1}{n!} \sum_{\sigma \in S} \delta_{\lambda}(\sigma) \delta_{\mu}(\sigma^{-1}) = \frac{|C_{\lambda}|}{n!} \delta_{\lambda, \mu} = \frac{1}{z_{\lambda}} \delta_{\lambda, \mu},$$

where $\delta_{\lambda,\mu}$ is a Kronecker delta. We then define an inner product on symmetric functions as follows.

Definition 1.2. The *inner product of symmetric functions* is defined on the power-sum basis as

$$\langle p_{\lambda}, p_{\mu} \rangle := z_{\lambda} \delta_{\lambda \mu}.$$

This definition makes F an isometry because

$$\langle F(\delta_{\lambda}), F(\delta_{\mu}) \rangle = \langle p_{\lambda}/z_{\lambda}, p_{\mu}/z_{\mu} \rangle = \frac{1}{z_{\lambda}} \delta_{\lambda \mu}.$$

Also, for any character χ ,

$$\chi(\sigma_{\lambda}) = z_{\lambda}(\chi, \delta_{\lambda}) = z_{\lambda} \langle F(\chi), F(\delta_{\lambda}) \rangle$$

This says that the $\{p_{\lambda}\}$ and $\{p_{\lambda}/z_{\lambda}\}$ are dual bases.

1.2 The Casimir element of a vector space

Definition 1.3. Let V be a finite dimensional inner product space. Two bases $\{u_i\}$, $\{v_j\}$ are dual bases if $\langle u_i, v_j \rangle = \delta_{i,j}$.

Definition 1.4. Let V be a finite dimensional inner product space with dual bases $\{u_i\}$, $\{v_j\}$. The Casimir element $\theta \in V \otimes V$ is $\theta = \sum_i u_i \otimes v_i$.

Remarkably, this depends only on $\langle \cdot, \cdot \rangle$. Since V is finite dimensional, we have the isomorphism $V \cong V^*$ given by $u_i \mapsto \xi_i$, where $\xi_j(u_i) = \delta_{i,j}$. Then we have

$$V \otimes V \cong V \otimes V^* \cong \text{End}(V),$$

where the second isomorphism is given by $v \otimes \xi \mapsto (w \mapsto \xi(w)v)$.

What corresponds to the identity element $1_V \in \text{End}(V)$? It is $\sum_i u_i \otimes \xi_i$, where $\xi_i(u_j) = \delta_{i,j}$. Then the Casimir element is the corresponding element in $V \otimes V$.

1.2.1 The Casimir element of the symmetric functions

For convenience of notation, call

$$\Omega = H(1) = \sum_{n=0}^{\infty} h_n = \prod_i \frac{1}{1 - x_i}.$$

We also call this $\Omega[X]$ to emphasize that this is a symmetric function in variables x_1, x_2, \ldots

$$\Omega = \exp\left(\sum_{k>0} \frac{p_k}{k}\right).$$

 $\Lambda_{\mathbb{Q}} \otimes \Lambda_{\mathbb{Q}}$ is isomorphic to the symmetric functions in x_1, x_2, \ldots and y_1, y_2, \ldots , where the functions are symmetric separately with respect to the x_i and the y_j . So we may identify the Casimir element as

$$\theta_n = \sum_{|\lambda|=n} \frac{p_{\lambda}(X)p_{\lambda}(Y)}{z_{\lambda}}.$$

What is this? Note that

$$p_k(X)p_k(Y) = \left(\sum_i x_i^k\right) \left(\sum_j y_j^k\right) = \sum_{i,j} (x_i y_j)^k = p_k(XY),$$

which makes

$$p_{\lambda}(X)p_{\lambda}(Y) = p_{\lambda_1}(X)p_{\lambda_1}(Y)\cdots p_{\lambda_{\ell}}(X)p_{\lambda_{\ell}}(Y) = p_{\lambda_1}(X)\cdots p_{\lambda_{\ell}}(XY) = p_{\lambda}(XY).$$

We then get the following expression for the Casimir element:

$$\theta = \sum_{n} \sum_{|\lambda|=n} \frac{p_{\lambda}(XY)}{z_{\lambda}} = \Omega[XY] = \prod_{i,j} \frac{1}{1 - x_{i}y_{j}}.$$